q-TRIGONAL KLEIN SURFACES

BY

B. ESTRADA* AND E. MARTiNEZ*

Departamento de Matemdticas Fundamentales, UNED Paseo de la Senda del Rey n°9, 28040-Madrid, Spain e-mail: bestra@mat.uned.es, emartinez@mat.uned.es

ABSTRACT

In this paper q-trigonal Klein surfaces are introduced in a similar way to that of q-hyperelliptic surfaces. They are characterized by means of non-Euclidean crystallographic groups (NEC groups in short). As a consequence of this characterization, given a family of Klein surfaces (orientable or not) with topological genus g and k boundary components the admissible values for q are calculated. In particular, the families for which there is no admissible q or families with unique q are obtained.

1. Introduction

A Klein surface X is a surface equipped with a dianalytic structure. The modern study of Klein surfaces started with [1]. There is a Uniformization Theorem similar to that of Poincaré and Kobe for Riemann surfaces. A Klein surface X is the quotient \mathcal{D}/Γ , where $\mathcal D$ is the hyperbolic plane and Γ is a surface NEC group.

In the last three decades the study of the automorphism groups of Klein surfaces has been an important research field. A reference book about Klein surfaces and NEC groups is [6] with a long list of references. Particular families of Klein surfaces have been studied very much, for example hyperelliptic surfaces.

A Klein surface X is said to be q-hyperelliptic if and only if it admits an automorphism of order two, such that the quotient $X/<\phi>$ has algebraic genus

^{*} The authors are partially supported by DGICYT PB98 0017.

Received November 8, 2001 and in revised form December 14, 2001

q. When $q = 0$ the surface is said to be hyperelliptic and its characterization, by means of NEC groups, is given in [4]. The case $q = 1$ corresponds to elliptichyperelliptic surfaces [5]. The general case, q , is studied in [3] for planar surfaces and in [7] for orientable surfaces of genus 1.

A Klein surface X is said to be **cyclic trigonal** if and only if X admits an automorphism ϕ of order three such that $X/ ϕ > has algebraic genus 0. Cyclic$ trigonal Klein surfaces and their automorphism groups have been studied in [2].

In this work we introduce q -trigonal Klein surfaces. Such a surface X admits an automorphism ϕ of order three, such that $X/ ϕ is algebraic genus q. Let$ us denote by $\mathcal{K}_{a,k}^{\pm}$ the family of Klein surfaces of topological genus g, k boundary components, orientable $(+)$ or not $(-)$. For each family we characterize in Section 3 the q-trigonality by means of NEC groups and we calculate the admissible values of q. As a consequence of this characterization we answer the following questions: what families do not contain any q-trigonal surface and which ones admit a unique admissible value q?

In the next Section we give necessary preliminaries about NEC groups and Klein surfaces.

2. Preliminaries

An NEC group Γ is a discrete subgroup of isometries of the hyperbolic plane $\mathcal D$ (including reversing-orientation isometries) with compact quotient \mathcal{D}/Γ [13]. The signature of Γ is the following symbol and it determines its algebraic structure [10]:

$$
(1) \qquad \sigma(\Gamma): (g; \pm; [m_1, \ldots, m_r], \{(n_{1,1}, \ldots, n_{1,s_1}), \ldots, (n_{k,1}, \ldots, n_{k,s_k})\}),
$$

where $g, k \geq 0$, $m_i, n_{i,j} \geq 2$ and every number is an integer. The quotient \mathcal{D}/Γ has topological genus g and k boundary components. The brackets $(n_{i,1},\ldots,n_{i,s_i})$ are called cycle-periods and the numbers m_i and $n_{i,j}$ are called proper peri**ods** and link periods, respectively. If $r = 0$, $k = 0$ or $s_i = 0$, we write in each respective case $[-], \{-\}, (-)$. Also, we write $m_i^t, n_{i,j}^t$ or $(-)^t$ when a period or a cycle-period is repeated t times.

The algebraic genus of Γ is $p = \eta q + k - 1$, where $q = 2$ or 1 according to whether the sign in σ is '+' or '-'. The area of Γ is the area of any one fundamental region of Γ . It is denoted by $|\Gamma|$ and it satisfies

$$
|\Gamma| = 2\pi \Big(\eta g + k - 2 + \sum_{i=1}^r (1 - 1/m_i) + \frac{1}{2} \sum_{i=1}^k \sum_{j=1}^{s_i} (1 - 1/n_{i,j}) \Big).
$$

An NEC group Γ with signature as (1) exists if and only if $|\Gamma| > 0$ [14].

Let Γ be an NEC group with signature as (1). Γ is generated by $\{x_i\}_{i=1,\dots,r}$ elliptic transformations, ${e_i}_{i=1,...,k}$ hyperbolic transformations, ${c_{i,j}}_{i=0,1,...,s}$ reflections and $\{a_i, b_i\}_{i=1,\dots,q}$ hyperbolic transformations (if the sign is '+') or ${d_i}_{i=1,\ldots,g}$ glide reflections (if the sign is '-'). The generators satisfy the following relations:

$$
x_i^{m_i} = 1,
$$

\n
$$
i = 1, ..., r,
$$

\n
$$
c_{i,j-1}^2 = c_{i,j}^2 = (c_{i,j-1}c_{i,j})^{n_{i,j}} = 1, \quad i = 1, ..., k, j = 1, ..., s_i,
$$

\n
$$
e_i^{-1}c_{i,0}e_ic_{i,s_i} = 1,
$$

\n
$$
\prod_{i=1}^r x_i \prod_{i=1}^k e_i \prod_{i=1}^g [a_ib_i] = 1
$$
 if the sign is '+',

or

$$
\prod_{i=1}^{r} x_i \prod_{i=1}^{k} e_i \prod_{i=1}^{g} d_i^2 = 1,
$$
 if the sign is '-'',

where $[a_i b_i]$ denotes the commutator $a_i b_i a_i^{-1} b_i^{-1}$.

An NEC group with sign '+' in the signature and $k = 0$ (hence $g \ge 2$) is a Fuchsian group. An NEC group which is not a Fuchsian group is called a proper NEC group. The subgroup of all orientation preserving elements of a proper NEC group Γ is called the **canonical Fuchsian group** of Γ and denoted by Γ^+ .

Let X be a Klein surface of topological genus q and k boundary components. Then by [12] there exists an NEC group Γ with signature

(2)
$$
(g; \pm; [-], \{(-)^k\}),
$$

such that $X = \mathcal{D}/\Gamma$. In that case Γ is said to be a **surface** NEC group.

A Klein surface $X = \mathcal{D}/\Gamma$ has a canonical double cover which is the Riemann surface $X^+ = \mathcal{D}/\Gamma^+$, whose topological genus is p, the algebraic genus of X.

If $k = 0$ and sign '+', X is a classical Riemann surface; and if sign '-', X is a non-orientable Riemann surface.

G is a group of automorphisms of X with order N, if and only if there exists an NEC group Λ with $\Gamma \lhd_N \Lambda$ such that $G = \Lambda/\Gamma$ [11]. The automorphism group of X, Aut(X), is the quotient $N_G(\Gamma)/\Gamma$, where the group $N_G(\Gamma)$ denotes the normalizer of Γ in the group G of isometries of D.

A set of positive integers $\{n_1, n_2, \ldots, n_t\}$ satisfies the elimination property if

$$
lcm(n_1,\ldots,\widehat{n}_i,\ldots,n_t)=lcm(n_1,\ldots,n_t),
$$

for each $i = 1, \ldots, t$. Let σ be an NEC signature as (2) and N be an odd positive integer. Given another NEC signature τ

(3)
$$
(g^*; \pm; [m_1, \ldots, m_r], \{(-)^{k^*}\}),
$$

we say that (σ, τ) is an N-pair if there exist an NEC group Λ with signature τ and an epimorphism $\theta: \Lambda \to \mathbb{Z}_N$ whose kernel is an NEC group Γ with signature σ . We will need later the following result [6, Th. 3.1.2 and Th. 3.1.3].

THEOREM 1: The pair (σ, τ) is an N-pair if and only if:

- (1) For each $i = 1, \ldots, r$, m_i divides N, and $sign(\sigma) = sign(\tau)$.
- (2) $|\Gamma| = N|\Lambda|$.
- (3) There exist positive divisors l_1, \ldots, l_k of N such that

$$
(3.1) \ \ k = \sum_{j=1}^{k} N/l_j.
$$

(3.2) In the case '+' the set $\{m_1, \ldots, m_r, l_1, \ldots, l_k\}$ has the elimination *property.*

(4)
$$
N = lcm(m_1, ..., m_r, l_1, ..., l_k)
$$
 if $g^* = 0$ (case '+') or $g^* = 1$ (case '-').

3. Characterization of the q -trigonality

Definition 2: (i) A Riemann (Klein) surface S of topological (algebraic) genus q (p) is called q-trigonal if and only if it admits an order three automorphism ϕ such that the quotient $S/ < \phi >$ has topological (algebraic) genus q.

(ii) ϕ is called a *q*-trigonal automorphism of S.

The q-trigonality condition is expressed, by means of NEC groups, as follows:

PROPOSITION 3: A Klein surface $X = \mathcal{D}/\Gamma$ of algebraic genus p is q -trigonal if and only if there exists an NEC group Γ^* of algebraic genus q such that $\Gamma \lhd_3 \Gamma^*$.

Proof. We only need consider the results about automorphism groups shown in the previous Section. By virtue of them, there exists a q -trigonal automorphism, ϕ , of X if and only if there exists an NEC group Γ^* such that $\langle \phi \rangle = \Gamma^* / \Gamma$. Furthermore, since $X/ < \phi \geq \mathcal{D}/\Gamma^*$ then the algebraic genus of Γ^* must be q. **|**

COROLLARY 4: If a Klein surface $X = \mathcal{D}/\Gamma$ is q-trigonal, then the canonical *Riemann surface* $X^+ = \mathcal{D}/\Gamma^+$ *is q-trigonal.*

Proof: Let ϕ be a q-trigonal automorphism of X. Then there exists an NEC group Γ^* of algebraic genus q such that $\langle \phi \rangle = \Gamma^* / \Gamma$. If we consider the quotient of the canonical Fuchsian groups $(\Gamma^*)^+/\Gamma^+ = \langle \phi^+ \rangle$, we have ϕ^+ is a *q*-trigonal automorphism of X^+ .

Definition 5: An NEC group Γ^* , in the above conditions, is called a *q*-trigonal group of X.

The following result was obtained in [8, Th. 1].

THEOREM 6: Let S be a q-trigonal Riemann surface of genus g. Let ϕ, ψ be *q-trigonal automorphisms of S. If* $g > 9q + 4$ *then* $\phi = \psi$ *or* $\phi = \psi^{-1}$ *.*

COROLLARY 7: Let $X = \mathcal{D}/\Gamma$ be a *q*-trigonal Klein surface of algebraic genus *p*. If $p > 9q + 4$ then Γ^* , the q-trigonal group of X, is unique.

Proof: Suppose Γ_1 and Γ_2 are q-trigonal groups of X. Then $\Gamma_1^+/\Gamma^+ = \langle \phi \rangle$ and $\Gamma_2^+/\Gamma^+ = \langle \psi \rangle$, where ϕ and ψ are q-trigonal automorphisms of the canonical Riemann surface $X^+ = \mathcal{D}/\Gamma^+$. The topological genus of X^+ is p, so we can apply the preceding Theorem to obtain $\langle \phi \rangle = \langle \psi \rangle$ and so $\Gamma_1^+ = \Gamma_2^+$.

Let $h \in \Gamma$ be an orientation reversing element; then $h \in \Gamma_1$ and $h \in \Gamma_2$. So

$$
\Gamma_1 = \Gamma_1^+ \cup h\Gamma_1^+ = \Gamma_2^+ \cup h\Gamma_2^+ = \Gamma_2. \qquad \blacksquare
$$

PROPOSITION 8: Let X be a q-trigonal Klein surface of algebraic genus $p \geq 2$ and $k \geq 0$ boundary components. Then $k - 3 \leq 3q \leq p + 2$, where p and q must *have the same parity.*

Proof: Let $X = \mathcal{D}/\Gamma$ where Γ has signature (2). Because X is q-trigonal there exists an NEC group Γ^* with signature (3) such that $|\Gamma| = 3|\Gamma^*|$, $m_i = 3$ and $q = \eta g^* + k^* - 1$. From the relation between areas we obtain

$$
(4) \hspace{3.1em} 3q + 2r = p + 2,
$$

and hence

$$
3q \le p+2.
$$

Moreover, because

$$
r = \frac{p+2-3q}{2},
$$

and r must be an integral number, we deduce that p and q have the same parity.

Let k_1 be the number of boundary components such that $\theta(e_i) = 1$, and k_3 be the number of boundary components such that $\theta(e_i) = x$, where θ is the canonical

epimorphism $\theta: \Gamma^* \to \mathbb{Z}_3 = \langle x : x^3 \rangle$, with ker $(\theta) = \Gamma$. Each one of the former gives three components, in Γ and each one of the latter gives one component, so that

$$
k^* = k_1 + k_3, \quad k = 3k_1 + k_3;
$$

then

$$
k \leq 3k^*
$$

= 3q + 3 - 3\eta g*

$$
\leq 3q + 3.
$$

Furthermore, $k - k^* = 2k_1$, and then k and k^* must have the same parity. в

From now on Γ^* will denote an NEC group with signature

(6) $(g^*, \pm, [3^r], \{(-)^{k^*}\}\),$

where $k^* = k_1 + k_3$ is defined as above, $|\Gamma| = 3|\Gamma^*|$ and $q = \eta g^* + k^* - 1$.

LEMMA 9: Γ^* *is a q-trigonal group of* $X = \mathcal{D}/\Gamma$ *if and only if* Γ *and* Γ^* *have the* same *orientability and*

- (i) if Γ is orientable then $r + k_3 \neq 1$,
- (ii) *if* $g^* = 0$ then $r + k_3 \ge 2$,
- (iii) if Γ is non-orientable and $g^* = 1$ then $r + k_3 \geq 1$.

Proof: Γ^* is a q-trigonal group of X if and only if the pair (σ, σ^*) of signatures of Γ and Γ^* is a 3-pair. By Theorem 1, Γ and Γ^* must have the same orientability. Furthermore, in the orientable case the only thing to check is that the set $\{m_1,\ldots,m_r,l_1,\ldots,l_{k^*}\}\$ has the elimination property. But, since $m_i = 3, i = 1, \ldots, r; l_i = 1, i = 1, \ldots, k_1$, and $l_i = 3, i = k_1+1, \ldots, k^*$, then a necessary and sufficient condition is $r + k_3 \neq 1$. Besides, in the case $g^* = 0$, the condition (4) in Theorem 1 is equivalent to $r + k_3 \geq 2$. In the non-orientable case the condition $3 = lcm(m_1, \ldots, m_r, l_1, \ldots, l_{k^*})$ is equivalent to $r + k_3 \geq 1$.

From now on, given two integral numbers u, v we write $par(u, v) = 0$ or $par(u, v) = 1$, according to whether u and v have the same or different parity.

For each $p \geq 2$ we denote by Q_p the set of **admissible** values q, that is, the numbers q such that there exists a q -trigonal Klein surface with algebraic genus p. The set *Qp* is given in the following

THEOREM 10: The set of admissible values for each algebraic genus $p \geq 2$ is

$$
Q_p = \{q_i \in \mathbb{N} \cup \{0\} \mid q_0 \le q_i \le q_1 \text{ and } par(p, q_i) = 0\},\
$$

	q0	q0	q0
$k \equiv 0 \mod 3$	$\max\{0, \frac{k-3}{3}\}\$	$rac{1}{3}(k+3)$	$\frac{\kappa}{3}$
$k \equiv 1 \mod 3$	$rac{1}{3}(k-1)$	$rac{1}{3}(k+5)$	$rac{1}{3}(k+2)$
$k \equiv 2 \mod 3$	$rac{1}{3}(k+1)$	$\frac{1}{3}(k+7)$	$rac{1}{3}(k+4)$
	if $sign +$	if sign $-$ and g even	if sign $-$ and g odd

where *qo is given in the following table:*

and
$$
q_1 = \begin{cases} \frac{1}{3}(p-1) & \text{if sign} + \text{and } g \equiv 2 \mod 3, k = 0 \text{ or } 1, \\ \frac{1}{3}(p+2) & \text{if otherwise.} \end{cases}
$$

Proof: Let Γ be a surface NEC group with signature (2), algebraic genus $p =$ $\eta g + k - 1$ and Γ^* as in (6). The areas relation (4) can be written as

$$
\eta g + k + 1 = 3\eta g^* + 3k^* - 3 + 2r;
$$

then

(7)
$$
k = 3k^* - B
$$
 where $B = \eta g - 3\eta g^* + 4 - 2r$.

As we saw in Proposition 8, $k \leq 3k^*$ so $B \geq 0$. Thus g^* satisfies the condition

$$
(8) \t\t\t g^* \le \frac{\eta g + 4 - 2r}{3\eta}
$$

Let k_1 and k_3 be as in Proposition 8. Then

(9)
$$
k_1 = \frac{k - k^*}{2} = k^* - \frac{B}{2}, \quad k_3 = \frac{B}{2}.
$$

So B must be an even integer. From (7) we have B is even if and only if $\eta g - 3\eta g^*$ is even. That always occurs if $\eta = 2$ (the orientable case), but if $\eta = 1$ (the non-orientable case) a necessary condition is that g and g^* have the same parity. By Proposition 8

$$
\frac{k-3}{3}\leq q\leq \frac{1}{3}(p+2),
$$

and since $par(p, q) = 0$ we can write

(10)
$$
q = \frac{1}{3}(k+A) + 2l, \quad 0 \le l \le \frac{\eta g + 1 - A}{6},
$$

where $A \ge -3$ is an integer which depends on k and the parity of g.

Let $q = \frac{1}{3}(k + A) + 2l$ be an admissible value; then

(11)
$$
\frac{1}{3}(k+A) + 2l = \eta g^* + k^* - 1,
$$

$$
k = 3\eta g^* + 3k^* - 3 - 6l - A.
$$

From (7) and (11)

(12) $B = A + 3 + 6l - 3nq^*$,

and from (12) and (7) we obtain

(13)
$$
r = \frac{\eta g + 1 - A - 6l}{2}.
$$

Our next aim is to find the smallest possible value $q \in Q_p$. For this, we see that for each possible value of $A \geq -3$ the smallest value, denoted by q_A , is given for $l=0$, and so $q_A = \frac{1}{3} (k + A)$. Now, we proceed to get q_0 :

CASE 1: If Γ is orientable, $par(q, p) = 0$ if and only if $par(k, q) = 1$; then A must be odd. Besides, $B \ge 0$ implies from (12)

$$
(14) \t\t\t A+3 \ge 6g^*.
$$

(a) If $k \equiv 0 \mod 3$, then $A \equiv 0 \mod 3$. Since $A \ge -3$ must be also odd, we see that the smallest value of A is $A = -3$. Now, from (14) we have $g^* = 0$, $B=0, k=3k^*, k_1=k^*, k_3=0, r=g+2$. So, since $k_3+r\geq 2$, by Lemma 9 we conclude $q_0 = \frac{1}{3}(k-3)$.

(b) If $k \equiv 1 \mod 3$ then $A \equiv 2 \mod 3$. Since $A \ge -3$ must be also odd, we see that the smallest value of A is $A = -1$. Now, from (14), $g^* = 0$ and so $B = 2, k_3 = 1, r = g + 1$. From Lemma 9, $q_0 = \frac{1}{3}(k - 1)$.

(c) If $k \equiv 2 \mod 3$ then $A \equiv 1 \mod 3$. In this case the smallest value of A is $A = 1$, and then $g^* = 0$, $B = 4$, $k_3 = 2$, $r = g$. Again from Lemma 9 we obtain $q_0 = \frac{1}{3}(k+1)$.

CASE 2: If Γ is non-orientable and $par(q, p) = 0$ the study splits into:

 (2.1) $par(q, k) = 0 \Longleftrightarrow q$ is odd.

(2.2) $par(q, k) = 1 \Longleftrightarrow q$ is even.

(2.1) If g is odd, then $par(q, k) = 0$ if and only if A is even. Furthermore, the condition $B \ge 0$ is equivalent to $A + 3 \ge 3g^*$; then $A \ge 0$.

(a) If $k \equiv 0 \mod 3$ then $A = 0$, $g^* = 1$, $k_3 = 0$ and $r = \frac{1}{2}(g+1)$. Since $g \ge 1$ then $r \geq 1$, so we can apply Lemma 9 to conclude $q_0 = k/3$.

(b) If $k \equiv 1 \mod 3$ then $A = 2$. Here $B \ge 0$ gives $g^* = 1$ and so $k_3 = 1$ and $r = \frac{1}{2}(g-1)$. Again, from Lemma 9 we have $q_0 = \frac{1}{3}(k+2)$.

(c) If $k \equiv 2 \mod 3$ then $A = 4$. $B \ge 0$ is satisfied if and only if $g^* = 1$. In these conditions $k_3 = 2$ and $r = \frac{1}{2}(g - 3) \geq -1$. Now Lemma 9 asserts $q_0 = \frac{1}{3}(k+4)$.

(2.2) If g is even, then $par(q, k) = 1$ if and only if A is odd. Besides, as g^* must be even then $g^* \geq 2$, so $B \geq 0$ if and only if $A \geq 3$. There are no more conditions to be satisfied by Γ^* , then:

- (a) If $k \equiv 0 \mod 3$, then $A = 3$ and $q_0 = \frac{1}{3}(k+3)$.
- (b) If $k \equiv 1 \mod 3$, $A = 5$ and $q_0 = \frac{1}{3}(k + 5)$.
- (c) If $k \equiv 2 \mod 3$, $A = 7$ and $q_0 = \frac{1}{3}(k+7)$.

Now, we are going to study the non-admissible values of q . To do it let us consider $q = \frac{1}{3}(k + A) + 2l$. From (9), (12) and (13) we obtain

(15)
$$
k_3 + r = \frac{\eta g - 3\eta g^* + 4}{2}.
$$

If $g^* = 0$ then $k_3+r = g+2 \geq 2$. If $g^* = 1$ and Γ^* is non-orientable then $k_3 + r = \frac{1}{2}(g + 1) \ge 1$. So, from Lemma 9, the non-admissible cases are those for which Γ^* is orientable and $k_3 + r = 1$, that is $g^* = \frac{1}{3}(g + 1)$. In particular, $g \equiv 2 \mod 3$. If $r = 1$, then $q = p/3$; for this value we have that k_3 is necessarily equal to 0 if and only if $k = 0$. If $r = 0$, then $q = \frac{1}{3}(p+2)$; in this case k_3 is necessarily equal to 1 if and only if $k = 1$.

As a consequence of the above Theorem we obtain the signatures of all q-trigonal groups

PROPOSITION 11: Let $X = \mathcal{D}/\Gamma$ be a Klein surface of algebraic genus $p > 2$, k *boundary components and topological genus g. For each* $q \in Q_p$ *the q-trigonal groups have the following signatures:*

$$
(g^*, \pm, [3^{(p+2-3q)/2}], \{(-)^{q+1-\eta g^*}\})
$$

for each g, 0* $\leq g^* \leq (3q - k + 3)/3\eta$ *, where sign(* Γ *)* = sign(Γ^*) and, if sign(Γ) = " - ", then $par(g, g^*) = 0$.

Proof: The number of periods in Γ^* is obtained from (5). The number of boundary components, k^* , comes from the fact that the algebraic genus of Γ^* is $q = \eta g^* + k^* - 1$. Now, let us consider again the areas relation

$$
\eta g + k + 1 = 3\eta g^* + 3k^* - 3 + 2r.
$$

Since $3k^* - k = 2k_3$, we have

$$
3\eta g^* + 3k^* = \eta g + 4 - 2r,
$$

so

$$
3\eta g^* + 2k_3 = \eta g + 4 - 2\left(\frac{p+2-3q}{2}\right) = 3q - k + 3.
$$

But since $k_3 \ge 0$, then $g^* \le (3q - k + 3)/3\eta$.

Let us denote by $\mathcal{K}_{q,k}^+$ (resp. $\mathcal{K}_{q,k}^-$) the family of orientable (resp. non-orientable) Klein surfaces with topological genus g and $k > 0$ boundary components. We may ask for what values $(g, k, +)$ or $(g, k, -)$ there exist admissible values. The answer is obtained as a Corollary to Theorem I0.

COROLLARY 12: *The families for which there* are *no admissible value q* are

 ${\cal K}^-_{1,3k'+2}$; ${\cal K}^-_{2,3k'+1}$; ${\cal K}^-_{2,3k'+2}$; ${\cal K}^-_{4,3k'+2}$.

Proof. As we have seen in the proof of Theorem 10, the restrictions in the topological type of the surfaces, to be q -trigonal, appear in the non-orientable case. Those restrictions come from the number of proper periods, $r = \frac{1}{2}(g+1-A)$, in Γ^* , that is, the number of fixed points of a *q*-trigonal automorphism.

If g is odd and $k \equiv 2 \mod 3$, then $r = \frac{1}{2}(g - 3)$, so $g \ge 3$.

If g is even and $k \equiv 0,1$ or 2, then $A=3,5$ or 7, respectively. So $g \geq 4$ if $k \equiv 1 \mod 3$ and $g \ge 6$ if $k \equiv 2 \mod 3$.

It follows that in every family $\mathcal{K}_{g,k}^+$, $k > 0$ there are q-trigonal surfaces. The topological types for which there exists a unique admissible q (and so $q = q_0$) are given in the following

COROLLARY 13: *There exists a unique q if and only if g and k appear in the following table:*

	Orientable case	Non-orientable case
$k \equiv 0 \mod 3 \mid q = 0, 2$		$q=1,2,3,4,6$
$k \equiv 1 \mod 3 \mid g = 0, 1, 2$		$g=1,3,4,5,6,8$
$k \equiv 2 \mod 3 \mid g = 0, 1, 2$		$q = 3, 5, 6, 7, 8, 10$

Proof: We need to check the cases for which the cardinality of Q_p equals 1, that is $Q_p = \{q_0\}$. This is equivalent to $q_0 + 2 > q_{\text{max}}$, where $q_{\text{max}} \leq q_1$ is the maximal admissible value. Now, the result follows by looking at the Table of Theorem 10. **|**

If $q = 0$, as an immediate consequence we obtain the following result which appears in [9] and [2] for bordered surfaces.

COROLLARY 14: Let *X be a cyclic trigonal Klein surface. Then* the *algebraic genus* $p \geq 2$ *of X is even and either:*

(i) *X is orientable with one* or *three boundary components, or*

(ii) *X is non-orientable without a boundary.*

Proof: From $k-3 \leq 3q = 0$ we obtain $k = 1,2,3$. Because $par(p,q) = 0$ the algebraic genus p must be even and then k must be odd; it is $k = 1,3$. Moreover, $q = 0$ implies that X^* is orientable and so X is too.

Another easy result, as a consequence of Theorem 10 and Corollary 13, is

COROLLARY 15: The family $K_{0,k}^+$ (planar surfaces) contains q-trigonal surfaces *for every k* ≥ 3 where *q is unique and equal to* $\frac{1}{3}(k-3), \frac{1}{3}(k-1)$, or $\frac{1}{3}(k+1)$ *according to whether* $k \equiv 0, 1$ *or 2 mod 3, respectively.*

In Table 1 every topological type of bordered Klein surfaces with algebraic genus $p < 10$ appears. The middle column covers the orientable case and the right one the non-orientable case. For each topological type the admissible values of q are given.

Now let us suppose that p and q are given where $q \in Q_p$. We look for the bounds for the number of boundary components of a bordered Klein surface of algebraic genus p and q -trigonal. We have the following

PROPOSITION 16: *In* the *above conditions the number of boundary components k is*

(i) *Orientable* case:

If q is even: $k = 1, 3, 5, \ldots, \min\{3q + 3, p + 1\}.$ *If q is odd:* $k = 2, 4, 6, \ldots, \min\{3q + 3, p + 1\}.$

(ii) *Non-orientable case: If par(k, p)* = 0, $k \leq \min\{p, 3q\}.$ *If* $par(k, p) = 1, k \leq min\{p-1, 3q-3\}.$

Proof: From (10) we have $\frac{1}{3}(k + A) \leq q$, where $A \geq -3$ depends on g and k.

(i) If X is orientable A attains the lower bound, so $k \leq 3q + 3$. On the other hand, since $k = p + 1 - 2g$, it follows that $k \leq \min\{3q + 3, p + 1\}$ and $par(k, p) = par(k, q) = 1.$

(ii) Non-orientable case. If $par(k,q) = 0$, from Theorem 10, Case 2.1, the smallest value of A is 0 and so $k \leq 3q$. If $par(k, q) = 1$, from Theorem 10, Case 2.2, $A \geq 3$ and then $k \leq 3q-3$. In both cases $k = p+1-g$. Since $g \geq 1$ then $k \leq p$, but if $par(k, p) = 1$ then k must be different from p.

B. ESTRADA AND E. MARTÍNEZ

Let us consider the family of 1-trigonal surfaces. Because $par(p, q) = 0$, p must be odd. Since $3 \cdot 1 \le p+2$, it follows that for each p odd there exist 1-trigonal Klein surfaces. From the last Proposition we have the following Corollary.

Vol. 131, 2002		q -TRIGONAL KLEIN SURFACES			
8	9 0	$\sqrt{2}$	1	8	
	$\mathbf{1}$ 7	$\boldsymbol{2}$	$\boldsymbol{2}$	7	
	$\boldsymbol{2}$ 5	$\sqrt{2}$	3	$\boldsymbol{6}$	$\boldsymbol{2}$
	$\bf 3$ $\boldsymbol{3}$	0, 2	$\boldsymbol{4}$	5	
	$\boldsymbol{4}$ $\mathbf 1$	0,2	$\overline{5}$	$\overline{\mathbf{4}}$	$\boldsymbol{2}$
			6	$\boldsymbol{3}$	$\boldsymbol{2}$
			$\overline{7}$	$\boldsymbol{2}$	$\boldsymbol{2}$
			8	$\mathbf{1}$	$\sqrt{2}$
$\boldsymbol{9}$	010	$\boldsymbol{3}$	1	9	$\boldsymbol{3}$
	$\,$ 8 $\,$ $\mathbf{1}$	3	$\boldsymbol{2}$	8	
	$\boldsymbol{6}$ $\boldsymbol{2}$	1,3	$\sqrt{3}$	7	3
	$\boldsymbol{3}$ $\overline{\mathbf{4}}$	1,3	$\boldsymbol{4}$	6	3
	$\boldsymbol{4}$ $\overline{2}$	1,3	5	$\overline{5}$	$\boldsymbol{3}$
			$\boldsymbol{6}$	4	3
			7	3	1,3
			8	$\,2$	$\sqrt{3}$
			$\boldsymbol{9}$	$\mathbf{1}$	1,3

COROLLARY 17: *Let X be a bordered 1-trigonal Klein surface. Then X* has *odd algebraic* genus. *Moreover, an orientable surface X* has 2, 4 or 6 *boundary components* and *a non-orientable X* has 1 or 3.

Comments: Three classes of interesting problems to be studied on q-trigonal surfaces arise.

The first one is to find the group of automorphisms of these surfaces, for each family $\mathcal{K}_{q,k}^{\pm}$ and each q previously fixed.

The second one deals with geometrical conditions on fundamental regions of surface NEC groups. To be more precise, let X_1 and X_2 be Klein surfaces with the same topological type and the same orientability character, and let us suppose X_1 is q_1 -trigonal and X_2 is q_2 -trigonal, $q_1 \neq q_2$. There exist surface NEC groups Γ_1 and Γ_2 such that $X_i = \mathcal{D}/\Gamma_i$. These groups have the same signature and "similar" canonical fundamental regions R_1 and R_2 . What geometrical conditions must R_1 and R_2 satisfy in order to reflect the different q_i -trigonality cases? In general, the problem may be too difficult. From Table 1, we see that the first topological type with two different values for q is $(1, 3, +)$, being $q = 0$ or 2. We think that the study of this particular family of surfaces may throw light on the general problem.

The third problem is related to the previous one. For $q \neq 0$ the quotient

 $X/ \langle \phi \rangle$ can have different topological types. We again think that the geometrical study of the fundamental regions would allow one to distinguish such different quotients.

ACKNOWLEDGEMENT: The authors are very grateful to the referee for his important comments and suggestions.

References

- [1] N. L. Alling and N. Greenleaf, *Foundations of the theory of Klein surfaces,* Lecture Notes in Mathematics 219, Springer-Verlag, Berlin, 1971.
- [2] E. Bujalance, J. A. Bujalance, G. Gromadzki and E. Martinez, *Cyclic trigonal Klein surfaces*, Journal of Algebra 159 (1993), 436-459.
- [3] E. Bujalance and J, J. Etayo, *Characterization of q-hyperelliptic compact planar* Klein surfaces, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 58 (1988), 95-104.
- [4] E. Bujalance, J. J. Etayo and J. M. Gamboa, *Hyperelliptic Klein surfaces,* The Quarterly Journal of Mathematics. Oxford (2) 36 (1985), 141-157.
- [5] E. Bujalance, J. 3. Etayo and 3. M. Gamboa, *Superficies de Klein elfpticas hiperelipticas,* Memorias de la Real Academia de Ciencias, Tomo XIX, 1985.
- [6] E. Bujalance, J. J. Etayo, J. M. Gamboa and G. Gromadzki, *Automorphism Groups of Compact Bordered Klein Surfaces. A Combinatorial Approach,* Lecture Notes in Mathematics 1439, Springer-Verlag, Berlin, 1990.
- [7] B. Estrada and E. Martmez, On *q-hyperelliptic k-bordered tori,* Glasgow Mathematical Journal 43 (2001), 343-357.
- [8] H. M. Farkas, *Remarks on automorphisms of compact Riemann surfaces,* in *Discontinuous Groups and Riemann Surfaces* (L. Greenberg, ed.), Annals of Mathematics Studies, no. 79, Princeton University Press, 1974, pp. 121-144.
- [9] B. H. Gross and 3. Harris, *Real algebraic curves,* Annales Scientifiques de l'Ecole Normale Supérieure 14 (1981), 157–182.
- [10] A. M. Macbeath, *The classification of non-euclidean crystallographic groups*, Canadian Journal of Mathematics 19 (1967), 1192-1205.
- [11] C. L. May, *Large automorphism group of compact Klein surfaces with boundary,* Glasgow Mathematical Journal 18 (1977), 1-10.
- [12] R. Preston, *Projective Structures and Fundamental Domains on Compact h'lein Surfaces,* Ph.D. thesis, University of Texas, 1975.
- [13] H. C. Wilkie, *On non-Euclidean crystallographic groups,* Mathematische Zeitschrift 91 (1966), 87-102.
- [14] H. Zieschang, E. Vogt and H. D. Coldewey, *Surfaces and planar discontinuous groups,* Lecture Notes in Mathematics 835, Springer-Verlag, Berlin, 1980.