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ABSTRACT 

In this paper  q-trigonal Klein surfaces are introduced in a similar way 

to that  of q-hyperelliptic surfaces. They are characterized by means of 

non-Euclidean crystallographic groups (NEC groups in short).  As a con- 

sequence of this characterization, given a family of Klein surfaces (ori- 

entable or not) with topological genus g and k boundary  components  the 

admissible values for q are calculated. In particular, the families for which 

there is no admissible q or families with unique q are obtained. 

1. I n t r o d u c t i o n  

A Klein surface X is a surface equipped with a dianalytic structure. The modern 

study of Klein surfaces started with [1]. There is a Uniformization Theorem 

similar to that  of Poincar~ and Kobe for Riemann surfaces. A Klein surface X 

is the quotient / ) /F ,  where /)  is the hyperbolic plane and F is a surface NEC 

group. 

In the last three decades the study of the automorphism groups of Klein sur- 

faces has been an important  research field. A reference book about  Klein surfaces 

and NEC groups is [6] with a long list of references. Particular families of Klein 

surfaces have been studied very much, for example hyperelliptic surfaces. 

A Klein surface X is said to be q -hype re l l i p t i c  if and only if it admits an 

automorphism of order two, such that  the quotient X~ < ¢ > has algebraic genus 
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q. When q = 0 the surface is said to be hyperelliptic and its characterization, by 

means of NEC groups, is given in [4]. The case q = 1 corresponds to el l ipt ic-  

h y p e r e l l i p t i c  surfaces [5]. The general case, q, is studied in [3] for planar surfaces 

and in [7] for orientable surfaces of genus 1. 

A Klein surface X is said to be cycl ic  t r i g o n a l  if and only if X admits an 

automorphism ¢ of order three such that X/< ¢ > has algebraic genus 0. Cyclic 

trigonal Klein surfaces and their automorphism groups have been studied in [2]. 

In this work we introduce q-trigonal Klein surfaces. Such a surface X admits 

an automorphism ¢ of order three, such that X~ < ¢ > has algebraic genus q. Let 

us denote by )U~k the family of Klein surfaces of topological genus g, k boundary 

components, orientable (+) or not ( - ) .  For each family we characterize in Section 

3 the q-trigonality by means of NEC groups and we calculate the admissible 

values of q. As a consequence of this characterization we answer the following 

questions: what families do not contain any q-trigonal surface and which ones 

admit a unique admissible value q? 

In the next Section we give necessary preliminaries about NEC groups and 

Klein surfaces. 

2. Preliminaries 

An NEC group F is a discrete subgroup of isometries of the hyperbolic p l a n e / )  

(including reversing-orientation isometries) with compact quo t i en t / ) /F  [13]. The 

signature of P is the following symbol and it determines its algebraic structure 

[10]: 

(1) a ( F ) :  ( g ; : J ~ ; [ m l , . . . , ? T t r ] , { ( r t l , l , . . . , I l l , s l ) , . . . , ( ~ t k , 1  . . . . .  nk,s t:)}) ,  

where g, k _> 0, mi, ni,j _> 2 and every number is an integer. The quotient / ) / F  

has topological genus g and k boundary components. The brackets (hi,i, • • •, ni,~i) 

are called cyc l e -pe r i ods  and the numbers mi and ni,j are called p r o p e r  peri- 
ods and link pe r iods ,  respectively. If r = 0, k = 0 or si = 0, we write in each 

respective case [-], { -} ,  ( - ) .  Also, we write m~, n~,j or (_)t  when a period or 

a cycle-period is repeated t times. 

The a lgebra ic  genus  of F is p = ~g + k - 1, where ~7 = 2 or 1 according 

to whether the sign in a is '+ '  or '-'. The area o f f  is the area of any one 

fundamental region of F. It is denoted by IF I and it satisfies 

1 k 
IFI---- 2~r (~/g ÷ k - 2  ÷ ~ : 1  ( 1 -  1/mi)+ ~ ~-'~"i:l ~ 1 ( 1 -  i/ni,j)). 

An NEC group F with signature as (1) exists if and only if IFI > 0 [14]. 
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Let F be an NEC group with signature as (1). F is generated by {xi}i=l ..... r 

elliptic transformations, { e i } i = l  ..... ~ hyperbolic transformations, {c~,j } j~=o~i::i:k,~ 

reflections and {ai ,  b~}~=l ..... 9 hyperbolic transformations (if the sign is ' + ' )  or 

{di}~= 1 ..... g glide reflections (if the sign is '- '). The generators satisfy the following 

relations: 

x m~ = 1, 

C 2 j _ I  ~ C 2 . .t, 3 = ( C i , j _ l C i , j )  n ' ' j  = 1, 

e~ l c i , oe iC i , s s  = 1, 

Hir=l  X i H k = l  e i H g  l[aibi]  = 1 

o r  

i = 1 , . . . , r ,  

i = 1 . . . .  ,k, j -= 1 . . . .  ,si,  

i =  1 . . . . .  k, 

if the sign is ' + ' ,  

r k g 

H xi  H ei H d2 = 1, if the sign is '- ', 
i----1 i = l  i=1  

where [aibi] denotes the commutator  a~b~a71b:~ 1. 

An NEC group with sign ' + '  in the signature and k = 0 (hence g _> 2) is a 

Fuchsian group. An NEC group which is not a Fuchsian group is called a p r o p e r  

NEC group. The subgroup of all orientation preserving elements of a proper NEC 

group F is called the c a n o n i c a l  ~ c h s i a n  g r o u p  of F and denoted by F +. 

Let X be a Klein surface of topological genus g and k boundary components. 

Then by [12] there exists an NEC group F with signature 

(2) (g; :L; [-], {(_)k}),  

such that  X = 7)/F. In that  case F is said to be a s u r f a c e  NEC group. 

A Klein surface X = 7)/F has a canonical double cover which is the Riemann 

surface X + = 7)/F +, whose topological genus is p, the algebraic genus of X. 

If k = 0 and sign '+ ' ,  X is a classical Riemann surface; and if sign '- ' ,  X is a 

non-orientable Riemann surface. 

G is a group of automorphisms of X with order N, if and only if there exists 

an NEC group A with F <1N A such that  G = A/F [11]. The automorphism 

group of X,  Aut(X),  is the quotient NG(F)/F, where the group NG(F ) denotes 

the normalizer of F in the group G of isometries of 7). 

A set of positive integers {hi, ns . . . . .  nt} satisfies the e l i m i n a t i o n  p r o p e r t y  

if 

l c r n ( n l ,  . . . , n i ,  . . . , n t )  = I c m ( n a  . . . .  , n t ) ,  
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for each i = 1 , . . . ,  t. Let a be an NEC signature as (2) and N be an odd positive 

integer. Given another NEC signature 7 

(3) (g*; ±; Ira1,..., mr], {(_)k" }), 

we say that  (a, v) is an N-pair if there exist an NEC group A with signature v 

and an epimorphism 0: A - +  Z N whose kernel is an NEC group F with signature 

a. We will need later the following result [6, Th. 3.1.2 and Th. 3.1.3]. 

THEOREM 1 : The pair (a, v) is an N-pair i f  and only if: 

(1) For each i = 1 . . . .  , r, rni divides N,  and sign(a) = sign(r). 

(2) Irl = NIAI. 
(3) There exist positive divisors 11, . . . ,  lk of N such that 

(3.1) k = ~-'~Y*--1N/lj. 

(3.2) In the case ' + '  the set {ml . . . .  ,mr,  l l , . . . , I k }  has the elimination 

property. 

(4) Y = l cm(ml , . .  . , m r , l l , . . . , l k )  if  g* = 0 (case 'q-') or g* = 1 (case '-'). 

3. C h a r a c t e r i z a t i o n  o f  t h e  q - t r igona l i ty  

Definition 2: (i) A Riemann (Klein) surface S of topological (algebraic) genus 

g (p) is called q-trigonal if and only if it admits an order three automorphism ¢ 

such that the quotient S~ < ¢ > has topological (algebraic) genus q. 

(ii) ¢ is called a q-trigonal automorphism of S. 

The q-trigonality condition is expressed, by means of NEC groups, as follows: 

PROPOSITION 3: A Klein surface X = / ) / F  of algebraic genus p is q -trigonal i f  

and only i f  there exists an NEC group F* of algebraic genus q such that F <33 F*. 

Proof." We only need consider the results about automorphism groups shown in 

the previous Section. By virtue of them, there exists a q-trigonal automorphism, 

¢, of X if and only if there exists an NEC group F* such that < ¢ > =  F*/F. 

Furthermore, since X~ < ¢ > =  D/F* then the algebraic genus of F* must be q. 
| 

COROLLARY 4: / f  a Klein surface X = 1)/F is q-trigonal, then the canonical 

Riemann surface X + = / 9 / F  + is q-trigonal. 

Proof: Let ¢ be a q-trigonal automorphism of X. Then there exists an NEC 

group F* of algebraic genus q such that < ¢ > =  F*/F. If we consider the quotient 
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of the canonical Fuchsian groups (F*)+ /F  + = <  ¢+ >,  we have ¢+ is a q-trigonal 

au tomorphism of X +. | 

Definition 5: An NEC group P*, in the above conditions, is called a q-trigonal 

group of X.  

The  following result was obtained in [8, Th. 1]. 

THEOREM 6: Let S be a q-trigonal Riemann surface of genus g. Let ¢, ~/, be 

q-trigonal automorphisms orS .  I f  g > 9q + 4 then ¢ = ¢ or ¢ = ~/,-1. 

COROLLARY 7: Let X = D / F  be a q-trigonal Klein surface of  algebraic genus p. 

I f  p > 9q + 4 then F*, the q-trigonal group of X ,  is unique. 

Proof: Suppose I'1 and F2 are q-trigonal groups of X.  Then  FI+/F + = <  ¢ > and 

F + / F  + = <  ~/, > ,  where q~ and g~ are q-trigonal automorphisms of the canonical 

Riemann surface X + = D / F  +. The topological genus of X + is p, so we can apply 

the preceding Theorem to obtain < q~ > = <  ~/, > and so F + = F +. 

Let h E F be an orientation reversing element; then h C Pl  and h E F2. So 

r ,  = r l  + , h r +  = r +  u h r +  = r2 .  . 

PROPOSITION 8: Let X be a q-trigonal Klein surface of algebraic genus p >_ 2 

and k >_ 0 boundary components. Then k - 3 < 3q <_ p + 2, where p and q must  

have the same parity. 

Proof: Let X = D / F  where F has signature (2). Because X is q-trigonal there 

exists an NEC group F* with signature (3) such tha t  IF I = 3IF*I, m~ = 3 and 

q = rig* + k* - 1. From the relation between areas we obtain 

( 4 )  

and hence 

Moreover, because 

3q + 2r = p + 2, 

3 q < _ p + 2 .  

p + 2 - 3 q  
( 5 )  r - 

2 ' 

and r nmst be an integral number,  we deduce tha t  p and q have the same parity. 

Let ka be the number  of boundary  components  such tha t  O(ei) = 1, and k3 be 

the nmnber  of boundary  components  such that  O(ei) = x, where 0 is the canonical 
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epimorphism 0: F* -+ Z3 = <  x : x 3 >,  with ker(O) = F. Each one of the former 

gives three components,  in F and each one of the latter gives one component ,  so 

tha t  

k* -- kl -[- k3, k = 3kl + k3; 

then 
k <3k* 

=3q + 3 - 3~g* 

__3q + 3. 

Furthermore,  k - k* = 2kl, and then k and k* must  have the same parity. 

From now on F* will denote an NEC group with signature 

(6) (g.,  ~ ,  [3r], {(_)k* }), 

where k* = kl + k3 is defined as above, ]P I = 3IF* ] and q = ~g* + k* - 1. 

LEMMA 9: F* is a q-trigonal group of X = :D/F if and only i f F  and F* have the 

same orientability and 

(i) i f F  is orientable then r + k3 ~ 1, 

(ii) if  g* = 0 then r + k3 >/2, 

(iii) i f F  is non-orientable and g* = 1 then r + k3 >/1. 

Proof: F* is a q-trigonal group of X if and only if the pair ((r,a*) of signa- 

tures of F and F* is a 3-pair. By Theorem 1, F and F* must  have the same 

orientability. Furthermore,  in the orientable case the only thing to check is 

tha t  the set ( m l , . . . , m r , l l , . . . , l k . }  has the elimination property. But,  since 

mi = 3 ,  i =  1 . . . . .  r ; l i  = 1 , i =  1 , . . . , k l ,  a n d l i  = 3 ,  i =  k l + l  . . . . .  k*, t h e n a  

necessary and sufficient condition is r + k3 ~ 1. Besides, in the case g* = 0, the 

condition (4) in Theorem 1 is equivalent to r + k3/> 2. In the non-orientable case 

the condition 3 = l cm(rn l , . . . ,  mr, 11,.. . ,  lk* ) is equivalent to r + k3 >~ 1. | 

From now on, given two integral numbers u,v we write par(u, v) = 0 or 

par(u, v) = 1", according to whether u and v have the same or different parity. 

For each p >_ 2 we denote by Qp the set of a d m i s s i b l e  values q, tha t  is, the 

numbers  q such tha t  there exists a q-trigonal Klein surface with algebraic genus 

p. The set Qp is given in the following 

THEOREM 10: The set of admissible values for each algebraic genus p >__ 2 is 

Qp : {qi C N(-J {0} I qo ~ qi ~-- ql and par(p, qi) = 0}, 
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where qo is given in the following table: 

367 

qo qo qo 

k = 0 mod  3 max{0,  ---5-}k-3 l ( k  + 3 )  -3k 

k - l m o d 3  ½ ( k -  1) ½(k + 5 )  ~(k + 2 )  

k -  2 r o o d 3  ½ ( k + l )  + 7 )  + ½(k ½(k 4) 

if sign + if sign - and g even if sign - and 9 odd 

andql= { ½(p-1)½(p+2) ififsign+ andg=-2m°d3'k=O°rl'otherwise. 

Proof." Let F be a surface NEC group with s ignature  (2), algebraic genus p = 

qg + k - 1 and F* as in (6). The  areas relat ion (4) can be wri t ten  as 

~g + k + 1 = 3~g* + 3k* - 3 +  2r; 

then  

(7) k = 3k* - B where B = rig - 3~9" + 4 - 2r. 

As we saw in Proposi t ion  8, k _< 3k* so B _> 0. Thus  g* satisfies the condit ion 

~g + 4 - 2r 
(8) g* _< 

3q 

Let  kl and k3 be as in Propos i t ion  8. Then  

k - k *  B B 
- -  - -  - k * - - -  k 3 =  --. (9) kt 2 2 '  2 

So B must  be an even integer. F rom (7) we have B is even if and only if 

~?g - 3~9" is even. T h a t  always occurs if ~? = 2 (the orientable case), bu t  if ~ = 1 

(the non-orientable case) a necessary condit ion is tha t  g and g* have the same 

parity. By Proposi t ion  8 

k - 3 3  - < q < 3  ( p + 2 ) ' -  

and since par(p, q) = 0 we can write 

1 qg + 1 A 
(10) q = ¼ ( k + A ) + 2 1 ,  0 < l <  

6 ' ,3 
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where A _> - 3  is an integer which depends on k and the pari ty of g. 

Let q = l ( k  + A) + 2l be an admissible value; then 

~(k+A)  + 2 / - -  ~]g* + - 1, k* 

k = 3~g* + 3k* - 3 -  6 1 -  A. (11) 

From (7) and (11) 

(12) B = A +  3 +  6 1 -  3~g*, 

and from (12) and (7) we obtain 

~g + 1 - A - 61 
(13)  r = 

2 

Our  next aim is to find the smallest possible value q E Qp. For this, we see 

tha t  for each possible value of A _> - 3  the smallest value, denoted by qA, is given 

1 (k + A). Now, we proceed to get q0: f o r l = 0 ,  a n d s o q A  =-5 

CASE 1: If  F is orientable, par(q,p) = 0 if and only if par(k,q) = 1; then A 

must  be odd. Besides, B >_ 0 implies from (12) 

(14)  A + 3 > 6g*. 

(a) If  k - -  0 m o d 3 ,  then A - =  0 m o d 3 .  Since A > - 3  must  be also odd, we 

see tha t  the smallest value of A is A = - 3 .  Now, from (14) we have g* = 0, 

* k B = 0 ,  k = 3 k * , k l = k  , 3 - - 0 ,  r - - g + 2 .  So, s i n c e k 3 + r > 2 ,  b y L e m m a 9 w e  
1 conclude q0 = ~ (k - 3). 

(b) If  k - -  l m o d 3  then A - =  2 m o d 3 .  Since A >_ - 3  must  be also odd, we 

see tha t  the smallest value of A is A = - 1 .  Now, from (14), g* = 0 and so 
1 B = 2, k3 -- 1 , r  = g + 1. From Lemma 9, q0 -- ~(k - 1). 

(c) If  k -- 2 mod  3 then A -_- 1 mod  3. In this case the smallest value of A is 

A = 1, and then g* = 0, B = 4, k3 -- 2, r = g. Again from Lemma 9 we obtain  

q0 = + 1). 

CASE 2: If  F is non-orientable and par(q,p) = 0 the s tudy splits into: 

(2 .1)  par(q, k) = 0 ~ g is odd. 

(2 .2)  par(q,  k) = 1 g is even. 

(2.1)  If  g is odd, then par(q, k) = 0 if and only if A is even. Furthermore,  the 

condition B >_ 0 is equivalent to A + 3 _> 3g*; then A _> 0. 

(a) If  k =_ 0 r o o d 3  then A = 0, g* = 1, k3 = 0 and r = ½(g + 1). Since g > 1 

then r > 1, so we can apply Lemma 9 to conclude qo -- k/3. 
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(b) If  k - i m o d  3 then  A = 2. Here B _> 0 gives g* = 1 and  so k3 : 1 and  

l(k + 2). r = ½ (g - 1). Again ,  from L e m m a  9 we have q0 = 5 

(c) If  k =- 2 m o d 3  then  A = 4. B _> 0 is sat isf ied if and  only if g* = 1. In  these 
l g  condi t ions  k3 = 2 and r = ~( - 3) _ > - 1 .  Now L e m m a  9 asserts  q0 = ½(k -4- 4). 

(2 .2)  I f  g is even, then  par(q, k) = 1 if and  only if A is odd.  Besides, as g* 

mus t  be even t h e n g *  _> 2, s o B _ >  0 if and  only if A >_ 3. There  are no more 

condi t ions  to  be  sat isf ied by  F*, then:  
1 (a) I f  k = 0 m o d 3 ,  then  A = 3 and  q0 = ~(k -4- 3). 

1 (b) If  k = l m o d 3 ,  A = 5 and  q0 = ~(k + 5). 
1 (c) I f k = 2 m o d 3 ,  A = T a n d q 0 = 5 ( k + 7 ) .  

Now, we are going to s tudy  the non-admiss ib le  values of q. To do it let us 

(k + A) + 2l. F r o m  (9), (12) and  (13) we ob t a in  consider  q = 

~g - 3~g* -4- 4 
(15) k3 -4- r - 

2 

If  g* = 0 then  k3 ,4 , r  = g - 4 - 2 _ >  2. If  g* = l a n d F *  is non-or ientable  then  

k3 + r = ½(g + 1) > 1. So, from L e m m a  9, the  non-admiss ib le  cases are  those 

for which F* is or ien table  and k3 + r = 1, t ha t  is g* = l ( g  -4- 1). In  par t i cu la r ,  

g =- 2 mod  3. If  r = 1, then  q = p/3; for this  value we have t ha t  k3 is necessar i ly  

equal  to  0 if and  only if k = 0. If  r = 0, then  q = ½(p,4, 2); in th is  case k3 is 

necessar i ly  equal  to 1 if and  only if k = 1. | 

As a consequence of the  above Theorem we ob t a in  the  s igna tures  of al l  

q- t r igonal  groups  

PROPOSITION 11: Let X = 1)/F be a Klein surface of algebraic genus p >_ 2, k 

boundary components and topological genus g. For each q E Qp the q-trigonal 

groups have the following signatures: 

(g*, +, [z(,+2-3q)/:], 

for each g*, 0 G g* < (3q - k -4- 3) /3~,  where s ign(F)  = sign(F*) and,  i f  s ign(F)  = 

" - ", then par(g, g*) = O. 

Proo~ The number  of per iods  in F* is ob ta ined  from (5). The  number  of 

b o u n d a r y  components ,  k*, comes from the fact t ha t  the  a lgebra ic  genus of F* is 

q = 71g* + k* - 1. Now, let  us consider  again  the  areas  re la t ion  

~/g + k + 1 = 3~g* -4- 3k* - 3 -4- 2r. 
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Since 3k* - k = 2k3, we have 

3~/g* + 3k* -- ~/g + 4 - 2r, 

so 
37/g* + 2k3 = ~/g + 4 -  2 ( p +  2 - -  3q)- = 3 q - k  + 3. 

2 
But  since k3 _> 0, then g* _< (3q - k + 3)/3T/. | 

Let  us denote  by/Cg+k (resp./C~-k ) the family of orientable (resp. non-orientable)  

Klein surfaces with topological  genus g and k > 0 boundary  components .  We 

m a y  ask for wha t  values (g, k, + )  or (g, k, - )  there exist admissible values. The  

answer is obtained as a Corollary to Theorem I0. 

COROLLARY 12: The families for which there are no admissible value q are 

]~L3k'+2; ](~2,3k'+1 ; ]~2,3k'+2; ]~4,3k'+2" 

Proof." As we have seen in the proof  of Theorem 10, the restrict ions in the 

topological  type  of the surfaces, to be q-trigonal, appea r  in the non-orientable 

case. Those  restr ict ions come from the number  of proper  periods,  r = } ( g + l - A ) ,  

in F*, tha t  is, the number  of fixed points of a q-trigonal automorphis in .  

I f g  is odd and k -= 2 m o d 3 ,  then  r = l ( g _  3), so g _> 3. 

If  g is even and k ~ 0,1 or 2, t h e n A -  3 , 5 o r  7, respectively. S o g _ >  4 i f  

k - l m o d 3  and g _> 6 if k ~ 2 m o d 3 .  | 

I t  follows tha t  in every family/Cg,k,+ k > 0 there are q-trigonal surfaces. The  

topological  types  for which there exists a unique admissible q (and so q = qo) are 

given in the following 

COROLLARY 13: 

following table: 

There exists a unique q i f  and only i f  g and k appear in the 

Orientable case Non-orientable case 

k ~- O m o d 3  g = O , 2  g = 1 , 2 , 3 , 4 , 6  

k ~ l m o d 3  g = 0 ,1 ,2  g = 1 , 3 , 4 , 5 , 6 , 8  

k_= 2 m o d 3  g = 0 ,1 ,2  g = 3 ,5 ,6 ,7 ,8 ,  10 

Proof'. We need to check the cases for which the cardinal i ty of Qp equals 1, tha t  

is Qp =- {q0}. This  is equivalent to q0 + 2 > qma×, where qm~x <- ql is the max ima l  

admissible value. Now, the result  follows by looking a t  the Table of Theo rem 10. 
| 

If  q = 0, as an immedia te  consequence we obta in  the following result which 

appears  in [9] and [2] for bordered surfaces. 
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COROLLARY 14: Let X be a cyclic trigonal Klein surface. Then the algebraic 

genus p > 2 of X is even and either: 

(i) X is orientable with one or three boundary components, or 

(ii) X is non-orientable without a boundary. 

Proof'. F r o m k - 3  <_ 3q = 0 w e  obtain k = 1,2,3.  Because par(p,q) = 0 t h e  

algebraic genus p must  be even and then k must  be odd; it is k = 1,3. Moreover, 

q = 0 implies tha t  X* is orientable and so X is too. | 

Another  easy result, as a consequence of Theorem 10 and Corollary 13, is 

COROLLARY 15: The family ]C + (planar surfaces) contains q-trigonal surfaces O,k 
1 _ l (k  for every k _ > 3 where q is unique and equal to 5(k 3), - 1), or ½(k + 1) 

according to whether k =_ 0, 1 or 2 mod 3, respectively. 

In Table 1 every topological type of bordered Klein surfaces with algebraic 

genus p < 10 appears. The middle column covers the orientable case and the 

right one the non-orientable case. For each topological type the admissible values 

of q are given. 

Now let us suppose that  p and q are given where q E Qp. We look for the 

bounds for the number  of boundary  components  of a bordered Klein surface of 

algebraic genus p and q-trigonal. We have the following 

PROPOSITION 16: In the above conditions the number of boundary components 

k is 

(i) Orientable case: 

I fq  is even: k = 1 ,3 ,5  . . . . .  min{3q + 3 , p +  1}. 

I fq  is odd: k = 2 , 4 , 6 , . . . , m i n { 3 q  + 3 , p +  1}. 

(ii) Non-orientable case: 

I f  par(k, p) = O, k <_ rain{p, 3q}. 

Ifp(rr(k,p) -- 1, k < r a i n { p -  1,3q - 3}. 

Proof: From (10) we have l ( k  + A) < q, where A > - 3  depends on g and k. 

(i) If  X is orientabte A at ta ins  the lower bound,  so k <_ 3q + 3. On the 

other hand, since k = p + 1 - 2g, it follows tha t  k < min{3q + 3,p + 1} and 

p a r ( k , p )  = par (k ,  q) = 1. 

(ii) Non-orientable case. If  par(k,q) = 0, from Theorem 10, Case 2.1, the 

smallest value of A is 0 and so k < 3q. If  par(k, q) = 1, from Theorem 10, Case 

2.2, A > 3 and then k _< 3 q -  3. In bo th  cases k = p +  1 - g. Since g _> 1 then 

k < p, but  if par(k, p) = 1 then k must  be different from p. | 
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q-TRIGONAL KLEIN SURFACES 

0 9 2 
1 7 2 

2 5 2 
3 3 0,2 
4 1 O, 2 

010 3 

1 8 3 

2 6 1,3 

3 4 1,3 
4 2 1,3 

1 8 - 

2 7 - 
3 6 2 
4 5 - 
5 4 2 

6 3 2 

7 2 2 
8 1 2 

1 9 3 

2 8 - 

3 7 3 
4 6 3 

5 5 3 
6 4 3 

7 3 1,3 
8 2 3 

9 1 1,3 
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COROLLARY 17: Let X be a bordered 1-trigonal Klein surface. Then X has 

odd algebraic genus. Moreover, an orientable surface X has 2, 4 or 6 boundary 

components and a non-orientable X has 1 or 3. 

Comments: Three classes of interesting problems to be studied on q-trigonal 

surfaces arise. 

The first one is to find the group of automorphisms of these surfaces, for each 

family/Cgik and each q previously fixed. 

The second one deals with geometrical conditions on fundamental regions of 

surface NEC groups. To be more precise, let X1 and X2 be Klein surfaces with the 

same topological type and the same orientability character, and let us suppose XI  

is ql-trigonal and X2 is q2-trigonal, ql ¢ q2. There exist surface NEC groups F1 

and F2 such that  Xi = :D/Fi. These groups have the same signature and "similar" 

canonical fundamental regions R1 and R2. What  geometrical conditions must R1 

and R2 satisfy in order to reflect the different qi-trigonality cases? In general, 

the problem may be too difficult. From Table 1, we see that  the first topological 

type with two different values for q is (1, 3, +),  being q = 0 or 2. We think that  

the study of this particular family of surfaces may throw light on the general 

problem. 

The third problem is related to the previous one. For q ¢ 0 the quotient 
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X /  < ¢ > can have different topological  types.  We again th ink tha t  the geo- 

metr ical  s tudy  of the fundamenta l  regions would allow one to distinguish such 

different quotients.  
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